| Начало раздела Производственные, любительские Радиолюбительские Авиамодельные, ракетомодельные Полезные, занимательные  | Хитрости мастеру Электроника Физика Технологии Изобретения  | Тайны космоса Тайны Земли Тайны Океана Хитрости Карта раздела  | |
| Использование материалов сайта разрешается при условии ссылки (для сайтов - гиперссылки) | |||
Навигация: =>  | На главную/ Каталог патентов/ В раздел каталога/ Назад / | 
  | 
ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2020690
![]()
КОМПЕНСАТОР РЕАКТИВНОЙ МОЩНОСТИ
Имя изобретателя: Поссе Андрей Владимирович 
Имя патентообладателя: Поссе Андрей Владимирович
Адрес для переписки: 
Дата начала действия патента: 1992.04.14 
Область использования: на подстанциях трехфазного напряжения (промышленных,
тяговых и входящих в состав энергосистем) для компенсации и регулирования реактивной
мощности. Сущность изобретения: компенсатор содержит трехфазный мост с запираемыми
вентилями, включенный на реактор, два преобразовательных блока и конденсаторы для
ограничения перенапряжений. Каждый преобразовательный блок содержит две группы из
трех запираемых вентилей и реактор между ними в ветви постоянного тока. Одна группа
вентилей имеет угол регулирования 
2= 
1+
, а другая 
3= 
1-
,
где 
1 - угол регулирования вентилей
трехфазного моста, значение угла 
 и
соотношение между постоянными токами трехфазного моста и преобразовательных блоков
выбираются так, чтобы уменьшить содержание высших гармоник во входном токе
компенсатора.
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Изобретение относится к электроэнергетике и может быть использовано на подстанциях трехфазного напряжения (промышленных, тяговых и входящих в состав энергосистем) для компенсации и регулирования реактивной мощности.
Известны новые компенсаторы реактивной мощности, представляющие собой преобразователи с запираемыми вентилями [1]. Основное их преимущество по сравнению с традиционными тиристорными компенсаторами [2] состоит в том, что они выдают реактивную мощность за счет принудительной коммутации тока в области отрицательных углов регулирования. В результате для выдачи в электрическую сеть реактивной мощности не требуется сооружения конденсаторной батареи соответствующей мощности.
В известных компенсаторах для повышения качества входного тока (для уменьшения содержания в нем высших гармоник) используются преобразователи повышенной фазности 12,18 и 24-фазные [1].
Их недостаток в необходимости применения одного многообмоточного или нескольких двухобмоточных трансформаторов, в невозможности непосредственного подключения преобразователя к шинам трехфазного напряжения.
Наиболее близким к изобретению является компенсатор с одним двухобмоточным трансформатором, трехфазным мостом с запираемыми вентилями и конденсаторами для ограничения перенапряжений, возникающих при принудительных, практически мгновенных коммутациях тока запираемыми вентилями [3].
Недостаток этого компенсатора в низком качестве его входного тока, который содержит высшие гармоники порядка n = =6k ± 1, где k = 1,2,3..., имеет высокий коэффициент искажения синусоидальности (около 30%).
Целью изобретения является повышение качества входного тока компенсатора при сохранении возможности подключения компенсатора непосредственно к шинам без применения трансформатора.
Сущность изобретения состоит в том, что у предлагаемого компенсатора к его входу кроме
трехфазного моста присоединены два преобразовательных блока с разнонаправленными
запираемыми вентилями. Каждый блок содержит две группы вентилей и реактор между ними в
ветви постоянного тока. Одна группа из трех вентилей имеет угол регулирования 
2= 
1 + 
,
а другая группа 
 3 = 
1 - 
, где 
1 - угол регулирования вентилей трехфазного моста.
Значение угла 
 и соотношение между
постоянным током Id1трехфазного моста и постоянным током Id первого и
второго блока выбираются так, чтобы уменьшить содержание высших гармоник во входном
токе компенсатора. Хорошие результаты получаются при 
= 24о и Id1 = Idили при 
 = 30ои Id1 = 
 Id.
Добавление двух указанных преобразовательных блоков улучшает качество входного тока компенсатора за счет формирования его из трех сдвинутых по фазе токов моста и обоих блоков и получения в результате трехступенчатого тока, близкого по своей форме к синусоиде. Отметим, что добавление двух преобразовательных блоков приводит к соответствующему увеличению мощности компенсатора и поэтому обеспечивается высокое использование мощности всех запираемых вентилей компенсатора.
![]()  | ![]()  | 
![]()  | ![]()  | 
На фиг. 1 приведена схема предлагаемого компенсатора; на фиг.2 и 3 - графики, показывающие форму токов компенсатора.
К трехфазному входу компенсатора 1 (фиг.1) подключены конденсаторы 2, трехфазный мост 3 с запираемыми вентилями 4 и реактором 5, первый преобразовательный блок 6 с запираемыми вентилями 7 и 8 и реактором 9, а и второй преобразовательный блок 10, отличающийся от блока 6 только обратным направлением вентилей.
Конденсаторы 2 обеспечивают ограничение перенапряжений, возникающих из-за практически мгновенных коммутаций тока запираемыми вентилями. Мощность конденсаторов 2 не превышает 15% от номинальной мощности компенсатора. Конденсаторы 2 могут быть соединены по схеме "звезда" (фиг.1) или по схеме "треугольник".
При работе компенсатора с потреблением реактивной мощности вентили 4 трехфазного
моста 3 имеют угол регулирования 
1 = 90о- 
, где угол 
зависит от потерь мощности в компенсаторе, его значение лежит в пределах 1о. При
работе компенсатора с выдачей реактивной мощности угол 
1= -90о + 
.
Группы из трех запираемых вентилей 7 преобразовательных блоков 6 и 10 имеют угол
регулирования 
2 = 
1- 
 , а группы из трех запираемых вентилей 8
этих блоков - угол регулирования 
3 = 
1+ 
 . Величина угла 
и соотношение между постоянным током Id трехфазного моста и постоянным током Idпервого и второго преобразовательного блока выбираются такими, чтобы уменьшить
содержание высших гармоник в суммарном токе моста и обоих блоков и, как следствие этого,
во входном токе компенсатора.
Хорошие результаты в отношении уменьшения высших гармоник во входном токе получаются
в двух вариантах: 
 = 24о, Id1 = Id; 
= 30о, Id1 = 
Id.
Графики токов компенсатора для первого варианта построены на фиг.2 в предположении, что
постоянные токи моста 3 и блоков 6 и 10 полностью сглажены реакторами 5 и 9. Относительно
оси времени 11 показан фазный ток i1 на входе моста 3, относительно осей времени 12 и
13 - соответственно фазные токи i2 и i3 вентилей 7 и 8 двух преобразовательных
блоков 6 и 10. Построенные временные графики фазных токов i1, i2 и i3относятся к одной и той же фазе. В соответствии с углом регулирования 
2 ток i2 опережает ток i1 на угол 
= 24о.
Аналогично в соответствии с углом регулирования 
3 ток i3 отстает от тока i1 на тот же угол 
= 24о. Относительно оси времени 14 построен график фазного тока i, представляющего
собой сумму фазных токов моста и обоих блоков: i = i1 + i2 + i3. Форма тока i
значительно ближе к синусоиде, чем форма тока i1 трехфазного моста.
Входной ток компенсатора содержит две составляющие: ток преобразователей i и сравнительно малый ток конденсатора 2, поэтому о качестве входного тока можно судить по качеству тока преобразователей i.
Ток преобразователей i содержит первую гармонику i(1) и высшие гармоники i(n).
Первая гармоника i(1) показана на фиг.2, ее действующее значение![]()
При работе компенсатора с углом регулирования трехфазного моста 
-90о первая гармоника i(1) тока преобразователей опережает соответствующее
фазное напряжение сети U на угол 
 
90о, как это показано на фиг.2. Компенсатор при этом выдает в электрическую сеть, к
которой он присоединен, реактивную мощность. При 
1 
 90о первая
гармоника i1 тока преобразователей отстает на такой же угол от напряжения и
компенсатор потребляет реактивную мощность, величина которой (выдаваемой и
потребляемой) регулируется малым изменением углов регулирования вентилей, что
приводит к изменению токов Id1 и Id.
Относительное значение каждой высшей гармоники порядка n в токе преобразователей i в
рассматриваемом варианте, когда Id1 = Id и 
= 24о(фиг.2), определяется по формуле
Результаты расчета I(n)* для первых восьми высших гармоник, содержащихся в токах i1, i2 и i3, приведены в таблице. Для сравнения в ней же указаны известные значения I(n)* для тока i1 трехфазного моста.
Данные таблицы характеризуют уменьшение содержания высших гармоник во входном токе
предлагаемого компенсатора. При Id1 = Id и 
= 24о во входном токе предлагаемого компенсатора отсутствуют 5-ая и 25-ая гармоники,
остальные высшие гармоники уменьшены. Для улучшения качества входного тока особенно
существенно исключение 5-ой гармоники и значительное уменьшение величины 7-ой и 11-ой
гармоник. Коэффициент искажения синусоидальности тока i около 10%, примерно в 3 раза
меньше, чем для тока i1.
График тока преобразователей i для второго варианта его формирования, когда Id1 = 
Id и 
 = 30о, построен на фиг.3.
Получилась известная классическая форма входного тока 12-фазного преобразователя. Этот
ток i содержит первую гармонику и высшие гармоники порядка n = 12k ± 1, где k = 1,2,3, . .. В нем отсутствуют гармоники, для которых n = 5, 7,17, 19... Относительные
значения оставшихся высших гармоник (n =11,13,23,25...) такие же, как в токе i1 трехфазного
моста (см.таблицу). Коэффициент искажения синусоидальности тока i около 13%.
Таким образом, оба варианта дают хорошие результаты по уменьшению во входном токе компенсатора высших гармоник и, как следствие этого, по повышению его качества.
Могут быть применены и другие варианты формирования трехступенчатого тока
преобразователей i. Так, например, для исключения в нем 7-ой гармоники следует при Id1= Id установить угол 
 = 17,1о. В
этом варианте относительные значения 5-ой и 11-ой гармоник равны соответственно 7,9% и 3,1%,
коэффициент искажения синусоидальности тока около 13%.
Выбор того или другого варианта формирования трехступенчатого тока (соотношения между
Id1 и Id и величины угла 
 )
зависит от конкретных параметров электрической сети, к которой подключается
компенсатор (прежде всего от частотной характеристики ее реактивного сопротивления) и
от требований к качеству входного тока компенсатора.
ФОРМУЛА ИЗОБРЕТЕНИЯ
 КОМПЕНСАТОР РЕАКТИВНОЙ МОЩНОСТИ, содержащий трехфазный мост с запираемыми вентилями,
 реактор, включенный между полюсами моста, и конденсаторы, подключенные к трехфазному
 входу компенсатора по схеме "звезда" или "треугольник", отличающийся тем, что
 к входу компенсатора дополнительно присоединены два преобразовательных блока с
 разнонаправленными запираемыми вентилями, каждый блок содержит две группы из трех
 запираемых вентилей и реактор между ними в ветви постоянного тока, первая и вторая
 группы вентилей имеют углы регулирования
 
 
2 = 
1 + 
 и 
3 = 
1 - 
 ,
 
 где
 
 
1 - угол регулирования вентилей
 трехфазного моста,
 
 а угол 
 выбирается в пределах 17,1o 
 
 
 30o при условии соотношения
 
 
 
 где 
 - постоянный ток
 трехфазного моста;
 
 Id - постоянный ток преобразовательных блоков.
Версия для печати
Дата публикации 15.02.2007гг
Created/Updated: 25.05.2018
 |




