Начало раздела Производственные, любительские Радиолюбительские Авиамодельные, ракетомодельные Полезные, занимательные | Хитрости мастеру Электроника Физика Технологии Изобретения | Тайны космоса Тайны Земли Тайны Океана Хитрости Карта раздела | |
Использование материалов сайта разрешается при условии ссылки (для сайтов - гиперссылки) |
Навигация: => | На главную/Физика/ Открытия / |
ЕДИНАЯ КВАНТОВАЯ ТЕОРИЯ ПОЛЯ
МАТРИЧНОЕ МОДЕЛИРОВАНИЕ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
Савинов С.Н.
Единая квантовая теория, описывающая конечный уровень структуры всех видов материи, включающее моделирование элементарных частиц с объяснением их свойств (масса, время жизни, каналы распада, заряды, взаимодействие и прочее), позволяющее включить все известные квантовые явления в общую принципи-альную схему согласованную во всех аспектах и лишенную теоретических противоречий. В теоретическую схему включены поля взаимодействий.
- РИСУНОК -Структуры элементарных частиц - РИСУНОК -
Структуры элементарных частиц - РИСУНОК -
Механизмы взаимодействий и распадов
ЧАСТЬ 2
СТРУКТУРА И СВОЙСТВА МАТЕРИЙ ПЕРВОГО ТИПА
ПОЛЕ ВЗАИМОДЕЙСТВИЙ является проявлением прямолинейной траектории х-частицы (наиболее элементарной), уходящей в бесконечность.
При такой траектории частицы, формируются и распространяются векторы взаимодействий: гравитация ,электромагнитное (иные взаимодействия - результат геометрического соотношения замкнутых траекторий).В прямолинейной траектории х-частица имеет длинну волны равную бесконечности и по формуле Планка энергия ее равна соответсвенно нулю, взаимодействия не несут энергии.
Линейные траектории (поля ваимодействий) формируются при передаче "импульса" от временных
х-частиц в составе элементарных частиц на покоящиеся
х-частицы во внешнем пространстве, следует учитывать свойство
х-частицы -бесструктурность (точечность), поэтому при передаче "импульса" покоящаяся частица может уходить по линейной траектории только под углом
0 град, то есть формируют их всякие дуговые траектории. По данному определению прямолинейные траектории не образуют иных прямолинейных траекторий и потому невозможно изменение вектора взаимодействия в данной точке под влиянием другого взаимодействия. Прямолинейные траектории обладают вектором ,но не обладает взаимодействием,
поскольку построена из частицы не обладающей свойствами (х-частица) – поэтому взаимодействия (гравитация и электромагнитное) непосредственно этими траекториями не могут осуществляться
Если электромагнитное взаимодействие связано с круговой траекторией в избранной плоскости ,то гравитационное взаимодействие следует связывать со всеми траекториями и их энергоемкостями, в сумме дающими энергию покоя или массу частицы. Иначе говоря, гравитационное и электромагнитное взаимодействия идентичны, но вероятность активизации
х-частицы или количество активных х-частиц меньше для гравитации и потому определяют более слабое проявление
данного взаимодействия в сравнении с электромагнитным,
а принадлежность к избранной плоскости определяют вектор действия электрического поля и интенсивность.
Отдельно магнитное взаимодействие связано с дупликацией избранной плоскости в результате прецессии оси вращения круговой траектории в избранной плоскости при перемещении частицы, подобно прецессии механического гироскопа при изменении угла оси вращения под влиянием внешних сил .Поскольку электрическое взаимодействие определяется избранной плоскостью, то два варианта вращения в этой плоскости определяют два варианта взаимодействия; и поскольку гравитационное взаимодействие связано с самим движением матриц, то и определяется единичность его существования (не существует антигравитации).
Само взаимодействие осуществляется не посредством обменных механизмов, поскольку во всех случаях наблюдался бы эффект экранирования, то есть всякий третий объект помещенный между двумя взаимодействующими и и обладающий этим взаимодействием производил бы ослабление взаимодейсвтие.
Обменный механизм предусматривает наличие материального объекта между взаимодействующими объектами, скорость распространения которых равна скорости света, но в данном случае «черные дыры» не должны обладать гравитацией. Х-частицы находящиеся в покое располагаются в мировом пространстве вероятно образуя это самое пространство. Двигаясь по траекториям х-частицы действуют на находящиеся вокруг них покоящиеся х-частицы переводя их во временное состояние в виде прямолинейной траектории, эффект отдачи образованной прямолинейной траектории способствует сжатию криволинейной траектории к центру –таким образом осуществляется возможность к существованию криволинейных траекторий. В то же время вокруг частицы (криволинейной траектории) формируется область низкого содержания покоящихся х-частиц (разрежение), область «разряжения» между двумя траекториями, а и «эффект отдачи «для каждой частицы формируют в целом тенденцию к сближению этих частиц – формируется вектор взаимодействия.
ЯДЕРНОЕ ВЗАИМОДЕЙСТВИЕ
Тождественность электрического и гравитационного взаимодействий в данной теории ,должна проявляться в их взаимозаменяемости (эквиваленция). Наличие «эквиваленции» в природе не определяется в отношении двух тел связанных тяготением поскольку у таких тел (астрономические объекты) нет достаточно взаимодействующего электромагнитного поля между ними; «эквиваленция» не определяется электрически нейтральными частицами или заряженными объектами, поскольку в первом случае нет зарядов, а во втором электромагнитное взаимодействие превышает эффект эквивалентности между частицами, который без того не проявляется в квантовом мире - единственный вариант должного проявления «эквиваленции» является взаимодействие электрически нейтральной частицы и заряженной частицы. Вероятно «ядерные силы» -представляет собой гравитационное взаимодействие формируемое из электрического поля протона на основе «эквиваленции». Подтверждением подобного механизма ядерного взаимодействия являются существование гипер-ядер в составе которых находятся гипероны (разнородные частицы не реагирующие с нуклонами), и невозможность протон-протонных (чистых протонных) и нейтрон-нейтронных (чистых нейтронных) ядер, которые в свою очередь должны быть если «ядерные силы» действую равноценно между всеми нуклонами в ядре, существование устойчивости атомных ядер с четными характеристиками. Проявление зарядовой независимости в ядерном взаимодействии и стабильности нейтронов в ядрах являются по причине передаче электронов от нейтронов к протонам, которое не имеет значения во взаимодействии, а является скорее взаимодействием нуклонов. Важным свойством ядерного взаимодействие в данном рассмотрении является расстояние действия ядерных сил, для примера рассмотрим ядро гелия-3 составленного из двух протонов и одного нейтрона, максимальное расстояние между двумя протонами является поперечник нейтрона расположенного между ними, «ядерное» взаимодействие в данном ядре, возникающее между нейтроном и протонами слабее по величине «зарядов», но расстояние их взаимодействия значительно меньше, поскольку протон и нейтрон находятся в контакте. Ядерное взаимодействие появляется при превосходстве силы притяжения над отталкиванием, которое в свою очередь определяется расстоянием взаимодействия протона и нейтрона, которое при определенной величине расстояния позволяет силам притяжения превзойти электрическое отталкивание и сформировать ядро.
Наличие в атомном ядре сил притяжения между протоном-нейтроном и электрического отталкивания между протонами приводит к эффекту нецентрального действия ядерных сил.
ФОТОН (ГРАВИТОН ) представлен траекторией первого типа, плоской волнообразной формы, состоящей из линейной последовательности s-матриц. Построение фотона из с-, или m-матриц неосуществимо, поскольку в этом случае продольная ось симметрии не будет таковой для каждой отдельной матрицы.
Все s-матрицы расположены в одной плоскости, которая и является плоскостью поляризации. В подобной траектории нет вариантов симметрии и потому фотон - единственный.
Длинна волны определяется количеством s-матриц (фотонов) вдоль продольной оси симметрии – оси распространения, таким образом, чем меньше длинна волны, тем большее количество s-матриц ее формируют и тем большая соответственно энергия электромагнитной волны.
НЕЙТРИНО. Структура представлена винтовой траекторией – матрица третьего порядка по первому типу материи. Направление вращения винта не формирует заряд, так как в материи первого типа основной вид симметрии - продольный (для заряда требуется центровая), поэтому заряд нейтрино равен "0".
Направление вращения винтовой
траекторий имеет два варианта, соответственно существует частица и античастица.
Протяженность винтовой траектории в направлении продольной оси определяет энергоемкость нейтрино, которая в различных диапазонах является электронным,
мюонным или тау-нейтрино.
ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА
-
Бранский В.П. Теория элементарных частиц как объект методологического исследования. – Л., 1989.
-
Айзенберг И. Микроскопическая теория ядра. – М.: Атомиздат, 1976;
-
Соловьев В.Г. Теория атомного ядра: ядерные модели. – М.: Энергоатомиздат, 1981;
-
Бете Г. Теория ядерной материи. – М.: Мир, 1987;
-
Бопп Ф. Введение в физику ядра, адронов и элементарных частиц. – М.: Мир, 1999.
-
Вайзе В., Эриксон Т. Пионы и ядра. – М.: Наука, 1991.
-
Блохинцев Д.И. Труды по методологическим проблемам физики. – М.: Изд-во MГУ, 1993.
-
Гершанский В.Ф. Философские основания теории субатомных и субъядерных взаимодействий. – СПб.: Изд-во С.-Петербург. ун-та, 2001
-
Вильдермут К., Тан Я. Единая теория ядра. – М.: Мир, 1980
-
Кадменский С.Г. Кластеры в ядрах // Ядерная физика. – 1999. – Т. 62, № 7.
-
Индурайн Ф. Квантовая хромодинамика. – М.: Мир, 1986.
-
Мигдал А.Б. Пионные степени свободы в ядерной материи. – М.: Наука, 1991.
-
Гершанский В.Ф. Ядерная хромодинамика // MOST. – 2002.
-
Барков Л.М. Роль эксперимента в современной физике // Философия науки. – 2001. – № 3 (11).
-
Методы научного познания и физика. – М.: Наука, 1985.
-
Симанов А.Л. Методологические и теоретические проблемы неклассической физики // Гуманитарные науки в Сибири. – 1994. – № 1.
-
Фейнман Р. Взаимодействие фотонов с адронами. – М.: Иностр. лит., 1975.
-
Слив Л.А. и др. Проблемы построения микроскопической теории ядра и квантовая хромодинамика // Успехи физ. наук. – 1985. – Т. 145, вып. 4.
-
Бранский В.П. Философские основания проблемы синтеза релятивистских и квантовых принципов. – Л.: Изд-во Ленингр. ун-та, 1973.
-
Гершанский В. Ф., Ланцев И. А. Релятивистская ядерная физика и квантовая хромодинамика. – Дубна: ОИЯИ РАН, 1996.
-
Гершанский В.Ф., Ланцев И.А. Однонуклонное пион-ядерное поглощение при промежуточных энергиях в кварковой модели // Сб. тезисов 48й Международной конференции по физике ядра (16–18 июня 1998 г.). – Обнинск: ИАТЭ РАН, 1998.
-
Гершанский В.Ф., Ланцев И.А.Новый подход к загадке (3,3) резонанса // Сб. тезисов 49й Международной конференции по физике ядра (21–24 апреля 1999 г.). – Дубна: ОИЯИ РАН, 1999.
-
Гершанский В.Ф. Изобары и кварковые кластеры в ядрах // Вестник Новгород. гос. ун-та. Сер. Естественные науки. – В. Новгород. – 2001. – № 17.
Версия для печати
Авторы: Савинов С.Н.
Дата публикации 10.11.2006гг
Created/Updated: 25.05.2018